
Preface

This book contains an introduction to the mathematical theory of financial
markets with proportional transaction costs. Traditionally, a theoretical analy-
sis of models with market imperfections was considered as the most challeng-
ing and difficult chapter of mathematical finance. Nowadays there are hun-
dreds of papers on this subject, but it still is not covered by monographic
literature fixing the main achievements. We propose here a highly subjective
selection of results, which, as we hope, give an idea what is going on and which
may serve as a platform for further studies. The main topics are: approxima-
tive hedging, arbitrage theory, and consumption–investment problems.

Our interest in the subject originates from the famous paper of Heyne Le-
land, who suggested a method how to price contingent claims on a market
with constant proportional transaction costs and gave to the traders a prac-
tically important benchmark. From the economical perspectives his idea is to
replace the classical Black–Scholes principle of “pricing by replication” (co-
inciding, in the case of complete markets, with the principle of “pricing by
arbitrage”) by the principle of “pricing by an approximative hedging.” This
approximative hedging can be realized in various ways. Leland’s suggestion
was to apply the common algorithm of periodical portfolio revisions using the
common Black–Scholes formulae but with an appropriately enlarged volatility.
This method happened to be very efficient for practical values of the model
parameters where the transaction costs are small. It is widely accepted in the
financial industry. However, a more detailed analysis shows some interesting
mathematical aspects of this approach: even for the standard call option, the
terminal value of the replicating portfolio does not converge to the termi-
nal pay-off if the transaction cost coefficients do not depend on the number
of revisions (tending to infinity). The limiting discrepancy can be calculated
explicitly. This is a rigorous mathematical result disclaiming but not discard-
ing Leland’s approach. In his paper Leland conjectured that the convergence
takes place when the transaction costs are decreasing to zero as n−1/2, where
n is the number of revisions. This was confirmed in the thesis of Klaus Lott,
who provided necessary mathematical arguments; we refer to this particular
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case where the enlarged volatility does not depend on n as to the Leland–Lott
model. In fact, the approximation error always tends to zero if the transaction
costs tend to zero (with any rate). The latter property explains the applica-
bility of the Leland idea and its importance for the practical purposes: the
trader may assume that the real-world market is described by a model with
a particular but sufficiently large number n of revision intervals for which the
transaction cost coefficients kn are small enough.

The case investigated by Lott seems to be the most important. This is the
reason why we concentrate our efforts on the analysis of the asymptotical
behavior of the hedging error. We obtain the exact rate of asymptotics of
the L2-norm of this error for a large class of options with convex pay-off
functions. We consider the setting with nonuniform revision intervals and
establish an asymptotic expansion when the revision dates are tni = g(i/n),
where the strictly increasing scale function g : [0, 1] → [0, 1] and its inverse f
are continuous with their first and second derivatives on the whole interval or
g(t) = 1 − (1 − t)β , β ≥ 1. We show that the sequence n1/2(V n

T − VT ) converges
in law to a random variable which is the terminal value of a component of a
two-dimensional Markov diffusion process and calculate the limit.

It is worth noticing that the result that there is no convergence in the case
where the transaction costs do not depend on the model number also has some
practical implications: the revealed structure of the discrepancy explains the
empirical fact that the precision of approximation is worse in the case where
the stock at the maturity date evolves near the pay-off. We discuss this and
other aspects of the Leland strategy in our first chapter. In particular, we
provide a formulation of the Pergamenshchikov limit theorem which gives a
limiting distribution of the approximation error corrected by the discrepancy.

We present also the beautiful proof due to Skorokhod and Levental of the
Davis–Norman conjecture that in the presence of market friction the hedg-
ing (super-replication) of a call option on the stock evolving as a geometric
Brownian motion can be achieved by a single buy-and-hold transaction, at
the beginning of the trading period, without further trading.

In the second chapter we develop an arbitrage theory for financial markets
without friction.

First, we recall the classical arbitrage theory for frictionless market models
in discrete time, providing a self-contained and rather exhaustive synthesis
of the known results. We give a detailed analysis of the Dalang–Morton–
Willinger theorem in its modern formulation, which is a list of equivalent
conditions, and show that for the model with restricted information, the list
is necessarily shorter. Our presentation is adapted for the treatment of more
delicate problems for transaction cost model. Note that the mentioned clas-
sical topic is rarely discussed in textbooks on mathematical finance being
considered as too complicated. By this reason we present a “fast” and “el-
ementary” proof of the major equivalence suitable for lecture courses. It is
based on a combination of the original approach due to Chris Rogers with a
lemma on convergent measurable subsequences.
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We also discuss the structure of equivalent martingale measures and prove
the theorem that in the case where the reference measure is a martingale one,
the martingale measures with bounded densities are norm-dense in the set of
all martingale measures. This implies, in particular, that the set of martingale
measures with finite entropy, if nonempty, is dense in the set of all martingale
measures. This section also contains a simple proof of the optional decompo-
sition theorem, which is, in the discrete-time setting, a very simple result. We
also prove a hedging theorem for European options, which asserts that the set
of initial endowments for (self-financing) portfolios super-replicating a given
contingent claim is a closed interval. Its left extremity is the supremum of
expectations of the contingent claim with respect to the set of all martingale
measures. We go beyond finite-horizon setting and prove some no-arbitrage
criteria for infinite-horizon models. We conclude the section by an example
of application of the duality theory to a utility maximization problem and a
brief comment on continuous-time models.

With the above preliminaries, in the third chapter we attack the problem
of no-arbitrage conditions for markets with proportional transaction costs.

As a mathematical description for the latter, we use a general scheme of two
adapted cone-valued processes in convex duality, giving, at least for mathe-
maticians, a comprehensive “parameter-free” description of the main objects
of the theory. In the financial context the values of the primary processes are
polyhedral cones, describing solvency regions (evolving in time and depending
on the state of the nature). The portfolio processes are vector-valued; they
can be viewed either in terms of quotes (i.e., units of a certain numéraire) or
in terms of “physical units” (e.g., for models of currency markets, positions in
euros, dollars, yens, etc.); both descriptions are related in the obvious way. It
is convenient to treat the no-arbitrage conditions in “physical units domain”.
The crucial observation is that the natural analog of the density processes
of equivalent martingale measures in this general setting are strictly positive
martingales evolving in the dual cone-valued process. The considered frame-
work covers the majority of models considered in the literature, including the
pioneering paper by Jouini and Kallal.

We discuss three types of no-arbitrage properties: weak (NAw), strict (NAs),
and robust (NAr), all coinciding with the classical one when the transaction
cost coefficients are zero. The most natural generalization is the weak NA-
property, claiming the absence of strict arbitrage opportunities, i.e., portfolio
processes starting from zero and having as the terminal values a nontriv-
ial random vector with positive coordinates. For finite probability space, the
NAw-criterion can be established in a very easy way, by the same arguments
as the Harrison–Pliska theorem. Its formulation is simple: NAw holds if and
only if there exists a strictly positive martingale with values in the dual of
solvency cones. Surprisingly, an extension to an arbitrary probability space,
i.e., an analog of the Dalang–Morton–Willinger theorem, as it was shown by
Schachermayer, fails to be true in general. By this reason other definitions of
no-arbitrage were investigated by a number of authors. A particularly fruitful
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idea, due to Schachermayer, is to consider as arbitrage-free the models for
which the NAw-property still holds even under better investment opportuni-
ties, i.e., with “larger” solvency cones. Such a “robust” no-arbitrage property,
referred to as NAr, allows for an equivalent (“dual”) description without any
assumptions on the underlying probability space. We present another surpris-
ing result, due to Grigoriev: in the two-asset model the NAw-criterion in the
above formulation still holds.

Another interesting feature of models with transaction costs is the presence
of arbitrage of the second kind. The latter notion serves to describe the situa-
tion that the initial endowments of the investor lie outside the solvency cone.
Nevertheless, there is a self-financing portfolio which ends up in the solvency
cone. It happens that the absence of arbitrage of the second kind is equivalent
to the existence of martingales evolving in the interiors of dual of the solvency
cones with arbitrary starting points.

The hedging problem for European contingent claims for markets with
transaction costs can be formulated as follows. The contingent claim ξ is
a vector of liabilities expressed in the units of corresponding assets. The in-
vestor wants to know whether he can super-replicate the contingent claim (in
the sense of partial ordering generated by the solvency cone at the terminal
date) by a self-financing portfolio starting from the initial endowment x. The
answer is: the initial endowment x allows this if and only if its value Z0x is
not less than the expected value of the contingent claim EZT ξ whatever is
the process Z evolving in the dual to the solvency cone (a suggestive name
for such a process Z: consistent price system).

The American contingent claim is a process. The option seller is interested
to determine whether his initial endowment x suits to start a portfolio super-
replication the American contingent claim at all dates. We present in Chap. 3
a hedging theorem which involves a class of coherent price systems which is
larger than the class of consistent price systems.

We explain, following Bouchard, that models where the investor’s informa-
tion is delayed or restricted can be treated in the space of orders which is of
higher dimension and give no-arbitrage criteria for such a situation.

We provide some results on the other important theoretical problem, hedg-
ing theorem in continuous-time framework. The latter gives a description of
the set of initial vector-valued endowments ensuring the existence of a hedging
portfolio for a given, also vector-valued, contingent claim. The situation here
is more complicated than in the discrete-time setting: one needs an appropri-
ate definition of admissibility and even that of portfolio processes. We present
here the recent result due to Campi and Schachermayer explaining that the
requirement that the portfolio process is càdlàg is too restrictive to get a
“good” hedging theorem and should be replaced. We complete the chapter by
a hedging theorem for American options.

The concluding chapter is devoted to Davis–Norman consumption–invest-
ment problem in a multi-asset framework. We start by recalling the classical
Merton problem for a power utility function. From the point of view of ex-



Preface ix

perts in stochastic control the latter is trivial. Indeed, the verification theorem
(which is itself a very simple result) requires to find a solution of the Hamilton–
Jacobi–Bellman (HJB) equation. An easy argument shows that the Bellman
function inherits the homogeneity property of the utility function and, thus,
if finite, it is the same utility function up to a multiplicative constant, and
the HJB equation is reduced immediately to an algebraic one to determine
the latter.

The situation becomes quite different in the transaction cost setting. The
problem is far from being trivial even in the case of powerful utility function.
There is no smooth solution, and, therefore, the usual verification theorem
does not work. The remedy comes from the theory of viscosity solutions.
However, one should first check that the Bellman function is a viscosity so-
lution of the HJB equation. Though the general lines of the arguments are
well known, they are quite lengthy and rarely presented in detail. Moreover,
there are many definitions of the viscosity solutions. We used the simplest
one adapted for positive utility functions. In this chapter we give a rigorous
proof of the Dynamic Programming Principle and derive that the Bellman
function is a viscosity solution of the HJB equation. We proof that the latter
has a unique solution in a class determined by a suitably defined Lyapunov
function. Following Soner–Shreve, we analyze the structure of the Bellman
function in the case of the two-asset model and conclude by presenting the
results of Shreve and Janec̆ek on the asymptotics of the solution when the
transaction costs tend to zero.

In the Appendix we collect various auxiliary results from convex geometry,
functional analysis, probability theory, measurable selection, and stochastic
differential equations with reflection. Of course, our bibliographical comments
are not exhaustive, and we apologize in advance for missing references.

This book could not be written without fruitful collaboration with our col-
leagues: Christophe Stricker, Freddy Delbaen, Esko Valkeila, Günter Last,
Nizar Touzi, Bruno Bouchard, Claudia Klüppelberg. We are grateful to
Thomas Keller and Iris Reinelt for their constructive comments and sugges-
tions. We express our thanks to Emmanuel Denis and Dimitri De Vallière for
their contribution and attentive reading of the manuscript.

A large portion of manuscript was completed during the stay of the first
author at the Kyoto University and Tokyo Metropolitan University.

Besançon Cedex, France Yuri Kabanov
Moscow, Russia

Karlsruhe, Germany Mher Safarian
Stuttgart, Germany



http://www.springer.com/978-3-540-68120-5


	Preface



